Share Button

Thanks to a revolutionary new absorption crystal, Danish scientists are a step closer to significantly helping people who suffer from respiratory ailments. The group has uncovered crystalline materials which are capable of pulling oxygen out of both air and water, a discovery which could eventually mark the end of the need to carry around cumbersome oxygen tanks.

This new revolutionary crystalline material can bind and store oxygen in high concentrations, then control its release time depending on what the user needs. It could even benefit deep sea divers, giving them superhero-like abilities to stay submerged for extended periods of time without an air tank.

We know that the standard human body can function with only 21% oxygen in the air around us, but about when we need it in higher concentrations?

Exactly this was the main subject of the study conducted at the University of Southern Denmark, with help from the University of Sydney, Australia.

Alongside Jonas Sundberg of the Department of Physics, Chemistry and Pharmacy at the University of Southern Denmark, the leader of the study was professor Christine McKenzie.

The study involved about a bucket full (10 liters) of microscopic grains, and found them to be enough to completely suck the oxygen out of a room. Professor Christine McKenzie said: “In the lab, we saw how this material took up oxygen from the air around us.”

This new material is smaller and lighter to carry than what is currently used to obtain the same result. Professor McKenzie has added: “A few grains contain enough oxygen for one breath, and as the material can absorb oxygen from the water around the diver and supply the diver with it, the diver will not need to bring more than these few grains.

When the substance is saturated with oxygen, it can be compared to an oxygen tank containing pure oxygen under pressure – the difference is that this material can hold three times as much oxygen.”

The crystalline material was obtained by using x-ray diffraction, displaying the atomic behavior of the material while it’s full of oxygen – it was then emptied of it.

Professor McKenzie also revealed: “An important aspect of this new material is that it does not react irreversibly with oxygen – even though it absorbs  oxygen in a so-called selective chemisorptive process. The material is both a sensor, and a container for oxygen – we can use it to bind, store and transport oxygen – like a solid artificial hemoglobin.”

However, an unexpected aspect to the new development is the oxygen storing process, which has turned out to be completely natural. The metal cobalt, the essential component in the new crystalline material has a function in controlling the process of absorption. It can provide the new material with the molecular and electronic structure that gives it the capability to steal oxygen from the air.

Christine McKenzie explains: “It is also interesting that the material can absorb and release oxygen many times without losing the ability. It is like dipping a sponge in water, squeezing the water out of it and repeating the process over and over again.”

Many conditions that can influence the process, was also illustrated by professor Christine McKenzie, which may impact the time involved in the absorption process. The result will be different versions of the same material. That being the case, different options will exist to control the time of release.

The absorbing crystal has virtually endless potentiality, with its impact already being felt in everything from the medical field to space exploration.

Share Button